Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Bacteriol ; 205(6): e0008923, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37195233

RESUMO

The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans. S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX), whose expression is induced by two types of peptide signals: CSP (competence stimulating peptide, encoded by comC) and XIP (sigX-inducing peptide, encoded by comS). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus, but not homologs of S. mutans blpRH (also known as comDE). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing sigX-inducing peptide (XIP), akin to that of S. mutans, and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans, implying that cross talk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.


Assuntos
Proteínas de Bactérias , Streptococcus mutans , Streptococcus mutans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptococcus/genética , Streptococcus/metabolismo , Peptídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Competência de Transformação por DNA
2.
PLoS Genet ; 18(5): e1010198, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613247

RESUMO

Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci.


Assuntos
Proteínas de Bactérias , Regulon , Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peptídeos/genética , Feromônios/genética , Feromônios/metabolismo , Regulon/genética , Transdução de Sinais/genética
3.
Mol Microbiol ; 116(2): 416-426, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33772889

RESUMO

In the process of natural transformation bacteria import extracellular DNA molecules for integration into their genome. One strand of the incoming DNA molecule is degraded, whereas the remaining strand is transported across the cytoplasmic membrane. The DNA transport channel is provided by the protein ComEC. Many ComEC proteins have an extracellular C-terminal domain (CTD) with homology to the metallo-ß-lactamase fold. Here we show that this CTD binds Mn2+ ions and exhibits Mn2+ -dependent phosphodiesterase and nuclease activities. Inactivation of the enzymatic activity of the CTD severely inhibits natural transformation in Bacillus subtilis. These data suggest that the ComEC CTD is a nuclease responsible for degrading the nontransforming DNA strand during natural transformation and that this process is important for efficient DNA import.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo/fisiologia , Desoxirribonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Transformação Bacteriana/genética , Proteínas de Bactérias/genética , Transporte Biológico Ativo/genética , Competência de Transformação por DNA/genética , Complexos Multienzimáticos/genética , Diester Fosfórico Hidrolases/metabolismo
4.
Mol Microbiol ; 116(2): 381-396, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33754381

RESUMO

The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.


Assuntos
Transporte Biológico Ativo/fisiologia , Competência de Transformação por DNA/fisiologia , DNA Bacteriano/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fímbrias/metabolismo , Transformação Bacteriana/genética , Transformação Bacteriana/fisiologia
5.
Mol Microbiol ; 116(1): 71-79, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33527432

RESUMO

We show that the ComEB protein is not required for transformation in Bacillus subtilis, despite its expression from within the comE operon under competence control, nor is it required for the correct polar localization of ComGA. We show further that the synthesis of the putative channel protein ComEC is translationally coupled to the upstream comEB open reading frame, so that the translation of comEB and a suboptimal ribosomal-binding site embedded in its sequence are needed for proper comEC expression. Translational coupling appears to be a common mechanism in three major competence operons for the adjustment of protein amounts independent of transcriptional control, probably ensuring the correct stoichiometries for assembly of the transformation machinery. comEB and comFC, respectively, encode cytidine deaminase and a protein resembling type 1 phosphoribosyl transferases and we speculate that nucleotide scavenging proteins are produced under competence control for efficient reutilization of the products of degradation of the non-transforming strand during DNA uptake.


Assuntos
Bacillus subtilis/genética , Competência de Transformação por DNA/fisiologia , DNA Bacteriano/metabolismo , Transformação Bacteriana/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Membrana Celular/metabolismo , DCMP Desaminase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multienzimáticos/biossíntese
7.
Curr Protoc Microbiol ; 58(1): e106, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32614522

RESUMO

Vibrio vulnificus, an emergent human pathogen, causes fulminant septicemia with a mortality rate of over 50%. Unlike for other pathogenic Vibrio species, the factors to conclusively indicate the virulence potential of V. vulnificus strains remain largely unknown. Understanding the pathogenesis of this bacterium at a molecular level is severely hindered by inefficiencies in transformation, for instance, due to the presence of a periplasmic nuclease, Vvn. Currently, successful transformation of V. vulnificus is nearly impossible due to lack of mobilizable plasmids for the bacterium, requiring (i) very high DNA concentrations, (ii) plasmid linearization, (iii) development of novel V. vulnificus-derived plasmids, or (iv) time-consuming conjugation-based methods. To overcome these limitations, we describe a rapid, efficient, and reproducible electroporation protocol to effectively transform widely available plasmids, with different copy numbers and antibiotic resistances, into phylogenetically distant strains of V. vulnificus. Cells are made competent in high concentrations of sucrose devoid of cations and recovered from electroporation using a high-salinity recovery medium. Compared to existing methods for transformation of V. vulnificus, significantly higher efficiencies are obtained using this improved protocol. Rapid and effective transformations can markedly improve molecular analyses of V. vulnificus leading to a greater understanding of its virulence potential. This is crucial to develop rapid detection methods which have the potential to prevent future outbreaks. The electroporation protocol described here may be particularly useful for optimizing transformation of other nuclease-producing bacteria. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of competent cells Basic Protocol 2: Transformation of cells by electroporation.


Assuntos
Eletroporação/métodos , Plasmídeos , Transformação Bacteriana , Vibrio vulnificus/genética , Competência de Transformação por DNA
8.
Cold Spring Harb Protoc ; 2020(7): 098111, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611778

RESUMO

In this protocol, the homology arm sequence for one-step bacterial artificial chromosome (BAC) modification is introduced by ligation into the shuttle vector carrying the reporter sequence to provide sites for recombination within the BAC clone. Crude lysates of individual bacterial transformants serve as templates in polymerase chain reaction (PCR) analysis to confirm the presence of the homology arms in the recombinant shuttle vector. To provide further assurance that the homology box has been successfully integrated into the plasmid, the enzyme digestion pattern of the modified plasmid is compared with that of the unmodified plasmid.


Assuntos
Cromossomos Artificiais Bacterianos/genética , DNA Bacteriano/genética , Escherichia coli/genética , Vetores Genéticos/genética , Plasmídeos/genética , Clonagem Molecular/métodos , Competência de Transformação por DNA/genética , Recombinação Genética , Transformação Bacteriana
9.
Genes (Basel) ; 11(6)2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575751

RESUMO

Natural genetic transformation is a programmed mechanism of horizontal gene transfer in bacteria. It requires the development of competence, a specialized physiological state during which proteins involved in DNA uptake and chromosomal integration are produced. In Streptococcus pneumoniae, competence is transient. It is controlled by a secreted peptide pheromone, the competence-stimulating peptide (CSP) that triggers the sequential transcription of two sets of genes termed early and late competence genes, respectively. Here, we used a microfluidic system with fluorescence microscopy to monitor pneumococcal competence development and transformation, in live cells at the single cell level. We present the conditions to grow this microaerophilic bacterium under continuous flow, with a similar doubling time as in batch liquid culture. We show that perfusion of CSP in the microfluidic chamber results in the same reduction of the growth rate of individual cells as observed in competent pneumococcal cultures. We also describe newly designed fluorescent reporters to distinguish the expression of competence genes with temporally distinct expression profiles. Finally, we exploit the microfluidic technology to inject both CSP and transforming DNA in the microfluidic channels and perform near real time-tracking of transformation in live cells. We show that this approach is well suited to investigating the onset of pneumococcal competence together with the appearance and the fate of transformants in individual cells.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal/genética , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Cromossomos/genética , Competência de Transformação por DNA/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/genética , Microfluídica/métodos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/patogenicidade , Transformação Bacteriana/genética
10.
Methods Mol Biol ; 2127: 13-27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112312

RESUMO

Escherichia coli is the workhorse of the structural biology lab. In addition to routine cloning and molecular biology, E. coli can be used as a factory for the production of recombinant membrane proteins. Purification of homogeneous samples of membrane protein expressed in E. coli is a significant bottleneck for researchers, and the protocol we present here for the overexpression and purification of membrane proteins in E. coli will provide a solid basis to develop lab- and protein-specific protocols for your membrane protein of interest. We additionally provide extensive notes on the purification process, as well as the theory surrounding principles of purification.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana , Cristalografia por Raios X , Competência de Transformação por DNA , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Transporte de Íons/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/metabolismo , Organismos Geneticamente Modificados , Filogenia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transformação Bacteriana
11.
Med. leg. Costa Rica ; 37(1): 101-113, ene.-mar. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1098377

RESUMO

Abstract Forensic microbiology is a scientific area that has emerged with the need to investigate biocrimes, as in the case of intentional transmission of the Human Immunodeficiency Virus (HIV). The present exploratory work aimed to demonstrate how biomedical technology, such as phylogenetics and quantification of viral load and CD4+ T lymphocytes, can be used to produce technical evidence that brings more certainty in determining the authorship and materiality of these criminal behaviors.


Resumen La microbiología forense es un área científica que ha surgido con la necesidad de investigar los delitos biológicos, como en el caso de la transmisión intencional del virus de la inmunodeficiencia humana (VIH). Este trabajo exploratorio tuvo como objetivo demostrar cómo la tecnología biomédica, como la filogenética y la cuantificación de la carga viral y los linfocitos T CD4+, puede usarse para producir evidencia técnica que brinde más certeza para determinar la autoría y la materialidad de estas conductas criminales.


Assuntos
Delitos Sexuais , HIV , Terapia Antirretroviral de Alta Atividade/métodos , Microbiologia , Síndrome de Imunodeficiência Adquirida/etiologia , Médicos Legistas , Competência de Transformação por DNA , Medicina Legal
12.
Curr Issues Mol Biol ; 37: 57-76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31950915

RESUMO

Transformation is the process of import and inheritable integration of DNA from the environment. As such, it is believed to be a major driving force for evolution. Competence for transformation is widespread among bacterial species. Recent findings draw a picture of a conserved molecular machine that binds DNA at the cell surface and subsequently transports it through the cell envelope. Within the cytoplasm the DNA is coated by proteins that mediate recombination or self-annealing. The regulatory mechanisms and environmental signals affecting competence are very diverse between different bacterial species. Competence in Bacillus subtilis has become a paradigm for stochastic determination of cell-fate. Quantitative analysis at the single cell level in conjunction with mathematical modelling allowed understanding of induction and decline of competence at the systems level. Currently, the picture is emerging of stochastic differentiation as a fitness trade-off in fluctuating environments.


Assuntos
Bacillus subtilis/fisiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Fenômenos Fisiológicos Bacterianos , Competência de Transformação por DNA , Humanos , Fenótipo , Percepção de Quorum , Transformação Bacteriana/genética
13.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31988172

RESUMO

The competence regulon of pneumococcus regulates both genetic transformation and virulence. However, competence induction during host infection has not been examined. By using the serotype 2 strain D39, we transcriptionally fused the firefly luciferase (luc) to competence-specific genes and spatiotemporally monitored the competence development in a mouse model of pneumonia-derived sepsis. In contrast to the universally reported short transient burst of competent state in vitro, the naturally developed competent state was prolonged and persistent during pneumonia-derived sepsis. The competent state began at approximately 20 h postinfection (hpi) and facilitated systemic invasion and sepsis development and progressed in different manners. In some mice, acute pneumonia quickly led to sepsis and death, accompanied by increasing intensity of the competence signal. In the remaining mice, pneumonia lasted longer, with the competence signal decreasing at first but increasing as the infection became septic. The concentration of pneumococcal inoculum (1 × 106 to 1 × 108 CFU/mouse) and postinfection lung bacterial burden did not appreciably impact the kinetics of competence induction. Exogenously provided competence stimulating peptide 1 (CSP1) failed to modulate the onset kinetics of competence development in vivo The competence shutoff regulator DprA was highly expressed during pneumonia-derived sepsis but failed to turn off the competent state in mice. Competent D39 bacteria propagated the competence signal through cell-to-cell contact rather than the classically described quorum-sensing mechanism. Finally, clinical pneumococcal strains of different serotypes were also able to develop natural competence during pneumonia-derived sepsis.


Assuntos
Competência de Transformação por DNA , Pneumonia Pneumocócica/complicações , Pneumonia Pneumocócica/microbiologia , Sepse/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Virulência
14.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848285

RESUMO

In Vibrio species, chitin-induced natural transformation enables bacteria to take up DNA from the external environment and integrate it into their genome. Expression of the master competence regulator TfoX bypasses the need for chitin induction and drives expression of the genes required for competence in several Vibrio species. Here, we show that TfoX expression in Vibrio campbellii strains DS40M4 and NBRC 15631 enables high natural transformation frequencies. Conversely, transformation was not achieved in the model quorum-sensing strain V. campbellii BB120 (previously classified as Vibrio harveyi). Surprisingly, we find that quorum sensing is not required for transformation in V. campbellii DS40M4 or Vibrio parahaemolyticus in contrast to the established regulatory pathway in Vibrio cholerae in which quorum sensing is required to activate the competence regulator QstR. Similar to V. cholerae, expression of both QstR and TfoX is necessary for transformation in DS40M4. There is a wide disparity in transformation frequencies among even closely related Vibrio strains, with V. vulnificus having the lowest functional transformation frequency. Ectopic expression of both TfoX and QstR is sufficient to produce a significant increase in transformation frequency in Vibrio vulnificus To explore differences in competence regulation, we used previously studied V. cholerae competence genes to inform a comparative genomics analysis coupled with transcriptomics. We find that transformation capability cannot necessarily be predicted by the level of gene conservation but rather correlates with competence gene expression following TfoX induction. Thus, we have uncovered notable species- and strain-level variations in the competence gene regulation pathway across the Vibrio genus.IMPORTANCE Naturally transformable, or competent, bacteria are able to take up DNA from their environment, a key method of horizontal gene transfer for acquisition of new DNA sequences. Our research shows that Vibrio species that inhabit marine environments exhibit a wide diversity in natural transformation capability ranging from nontransformability to high transformation rates in which 10% of cells measurably incorporate new DNA. We show that the role of regulatory systems controlling the expression of competence genes (e.g., quorum sensing) differs throughout both the species and strain levels. We explore natural transformation capabilities of Vibrio campbellii species which have been thus far uncharacterized and find novel regulation of competence. Expression of two key transcription factors, TfoX and QstR, is necessary to stimulate high levels of transformation in Vibrio campbellii and recover low rates of transformation in Vibrio vulnificus.


Assuntos
Regulação Bacteriana da Expressão Gênica , Transformação Bacteriana , Vibrio/fisiologia , Proteínas de Bactérias/genética , Competência de Transformação por DNA/genética , DNA Bacteriano , Expressão Gênica , Humanos , Modelos Biológicos , Fenótipo , Filogenia , Percepção de Quorum , Transativadores/genética , Vibrio/classificação
15.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478834

RESUMO

Natural competence for transformation is a primary mode of horizontal gene transfer. Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. However, the prevalence of non-degraded DNA with sufficient coding capacity is not well understood. In this context, we previously showed that naturally competent Vibrio cholerae use their type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors. Here, we explored the conditions of the DNA released through T6SS-mediated killing versus passive cell lysis and the extent of the transfers that occur due to these conditions. We show that competent V. cholerae acquire DNA fragments with a length exceeding 150 kbp in a T6SS-dependent manner. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters the exchange of genetic material with sufficient coding capacity to significantly accelerate bacterial evolution.


Assuntos
Competência de Transformação por DNA , DNA Bacteriano/metabolismo , Transferência Genética Horizontal , Vibrio cholerae/genética , DNA Bacteriano/genética , Evolução Molecular
16.
Mol Microbiol ; 112(5): 1388-1402, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403729

RESUMO

In Streptococcus mutans, the alternative sigma factor ComX controls entry into genetic competence. Competence stimulating peptide (CSP) induces bimodal expression of comX, with only a fraction of the population becoming transformable. Curiously, the bimodality of comX is affected by peptides in the growth medium and by carbohydrate source. CSP elicits bimodal expression of comX in media rich in small peptides, but CSP elicits no response in defined media lacking small peptides. In addition, growth on certain sugars increases the proportion of the population that activates comX in response to CSP. By investigating the connection between media and comX bimodality, we find evidence for two mechanisms that modulate transcriptional positive feedback in the ComRS system, where comX bimodality originates. We find that the endopeptidase PepO suppresses the ComRS feedback loop, most likely by degrading the XIP/ComS feedback signal. Deletion of pepO eliminates comX bimodality, leading to a unimodal comX response to CSP in both defined and complex media. We also find that CSP stimulates the ComRS feedback system by upregulating comR in a carbohydrate source-dependent fashion. Our data provide mechanistic insight into how S. mutans regulates bimodality and explain the puzzle of growth medium effects on competence induction by CSP.


Assuntos
Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/genética , Streptococcus mutans/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/química , Endopeptidases/genética , Endopeptidases/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum/fisiologia , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Fatores de Transcrição/genética , Trealose/metabolismo
17.
Elife ; 82019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433299

RESUMO

Constantly surrounded by kin or alien organisms in nature, eukaryotes and prokaryotes developed various communication systems to coordinate adaptive multi-entity behavior. In complex and overcrowded environments, they require to discriminate relevant signals in a myriad of pheromones to execute appropriate responses. In the human gut commensal Streptococcus salivarius, the cytoplasmic Rgg/RNPP regulator ComR couples competence to bacteriocin-mediated predation. Here, we describe a paralogous sensor duo, ScuR and SarF, which circumvents ComR in order to disconnect these two physiological processes. We highlighted the recurring role of Rgg/RNPP in the production of antimicrobials and designed a robust genetic screen to unveil potent/optimized peptide pheromones. Further mutational and biochemical analyses dissected the modifiable selectivity toward their pheromone and operating sequences at the subtle molecular level. Additionally, our results highlight how we might mobilize antimicrobial molecules while silencing competence in endogenous populations of human microflora and temper gut disorders provoked by bacterial pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Competência de Transformação por DNA/efeitos dos fármacos , Microbioma Gastrointestinal , Microbiota , Feromônios/metabolismo , Streptococcus salivarius/metabolismo , Antibacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Streptococcus salivarius/efeitos dos fármacos , Streptococcus salivarius/genética , Streptococcus salivarius/crescimento & desenvolvimento
18.
mBio ; 10(3)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186316

RESUMO

Natural competence is the term used to describe the uptake of "naked" extracellular DNA by bacteria; it plays a significant role in horizontal genetic exchange. It is associated with type IV pili, and specialized competence pili mediate DNA uptake. Here, we show that the crystal structure of a competence-associated protein from Thermus thermophilus, ComZ, consists of a type II secretion pseudopilin-like domain, with a large ß-solenoid domain inserted into the ß-sheet of the pilin-like fold. ComZ binds with high affinity to another competence-associated pilin, PilA2, which lies adjacent to the comZ gene in the genome. The crystal structure of PilA2 revealed a similar type II secretion pseudopilin-like fold, with a small subdomain; docking simulations predicted that PilA2 binds between the pseudopilin-like and ß-solenoid domains of ComZ. Electrophoretic shift analysis and DNase protection studies were used to show that ComZ alone and the ComZ/PilA2 complex are able to bind DNA. Protection against reductive dimethylation was used in combination with mass spectrometry and site-directed mutagenesis to identify two lysine residues in ComZ which are involved in DNA binding. They are located between the two domains in ComZ, on the opposite side from the predicted PilA2 binding site. These results suggest a model in which PilA2 assists ComZ in forming the competence pilus tip and DNA binds to the side of the fiber. The results demonstrate how a type IV pilin can be adapted to a specific function by domain insertion and provide the first structural insights into a tip-located competence pilin.IMPORTANCEThermus thermophilus is a thermophilic bacterium which is capable of natural transformation, the uptake of external DNA with high efficiency. DNA uptake is thought to be mediated by a competence-associated pilus, which binds the DNA substrate and mediates its transfer across the outer membrane and periplasm. Here, we describe the structural and functional analysis of two pilins which are known to be essential for DNA uptake, ComZ and PilA2. ComZ adopts an unusual structure, incorporating a large ß-solenoid domain into the pilin structural framework. We argue on structural grounds that this structure cannot readily be accommodated into the competence pilus fiber unless it is at the tip. We also show that ComZ binds DNA and identify two lysine residues which appear to be important for DNA binding. These results suggest a model in which ComZ and PilA2 form a tip-associated DNA receptor which mediates DNA uptake.


Assuntos
Competência de Transformação por DNA , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Receptores de Superfície Celular/química , Thermus thermophilus/genética , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Domínios Proteicos , Receptores de Superfície Celular/genética
19.
Phytopathology ; 109(10): 1811-1819, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31090497

RESUMO

'Candidatus Liberibacter' spp. are uncultured insect endosymbionts and phloem-limited bacterial plant pathogens associated with diseases ranging from severe to nearly asymptomatic. 'Ca. L. asiaticus', causal agent of Huanglongbing or citrus "greening," and 'Ca. L. solanacearum', causal agent of potato zebra chip disease, respectively threaten citrus and potato production worldwide. Research on both pathogens has been stymied by the inability to culture these agents and to reinoculate into any host. Only a single isolate of a single species of Liberibacter, Liberibacter crescens, has been axenically cultured. L. crescens strain BT-1 is genetically tractable to standard molecular manipulation techniques and has been developed as a surrogate model for functional studies of genes, regulatory elements, promoters, and secreted effectors derived from the uncultured pathogenic Liberibacters. Detailed, step-by-step, and highly reproducible protocols for axenic culture, transformation, and targeted gene knockouts of L. crescens are described. In the course of developing these protocols, we found that L. crescens is also naturally competent for direct uptake and homology-guided chromosomal integration of both linear and circular plasmid DNA. The efficiency of natural transformation was about an order of magnitude higher using circular plasmid DNA compared with linearized fragments. Natural transformation using a replicative plasmid was obtained at a rate of approximately 900 transformants per microgram of plasmid, whereas electroporation using the same plasmid resulted in 6 × 104 transformants. Homology-guided marker interruptions using either natural uptake or electroporation of nonreplicative plasmids yielded 10 to 12 transformation events per microgram of DNA, whereas similar interruptions using linear fragments via natural uptake yielded up to 34 transformation events per microgram of DNA.


Assuntos
Citrus , Competência de Transformação por DNA , Genoma Fúngico , Rhizobiaceae , Solanum tuberosum , Citrus/microbiologia , Genoma Fúngico/genética , Genômica , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-31001492

RESUMO

The mitis group of streptococci comprises species that are common colonizers of the naso-oral-pharyngeal tract of humans. Streptococcus pneumoniae and Streptococcus mitis are close relatives and share ~60-80% of orthologous genes, but still present striking differences in pathogenic potential toward the human host. S. mitis has long been recognized as a reservoir of antibiotic resistance genes for S. pneumoniae, as well as a source for capsule polysaccharide variation, leading to resistance and vaccine escape. Both species share the ability to become naturally competent, and in this context, competence-associated killing mechanisms such as fratricide are thought to play an important role in interspecies gene exchange. Here, we explore the general mechanism of natural genetic transformation in the two species and touch upon the fundamental clinical and evolutionary implications of sharing similar competence, fratricide mechanisms, and a large fraction of their genomic DNA.


Assuntos
Competência de Transformação por DNA , Transferência Genética Horizontal , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Transformação Bacteriana , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...